實現 Harris-Laplace 特徵檢測器,如 [195] 中所述。 更多...
#include <opencv2/xfeatures2d.hpp>
|
| virtual float | getCornThresh () const =0 |
| |
| String | getDefaultName () const CV_OVERRIDE |
| |
| virtual float | getDOGThresh () const =0 |
| |
| virtual int | getMaxCorners () const =0 |
| |
| virtual int | getNumLayers () const =0 |
| |
| virtual int | getNumOctaves () const =0 |
| |
| virtual void | setCornThresh (float corn_thresh_)=0 |
| |
| virtual void | setDOGThresh (float DOG_thresh_)=0 |
| |
| virtual void | setMaxCorners (int maxCorners_)=0 |
| |
| virtual void | setNumLayers (int num_layers_)=0 |
| |
| virtual void | setNumOctaves (int numOctaves_)=0 |
| |
| virtual | ~Feature2D () |
| |
| virtual void | compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors) |
| | 計算影像(第一種變體)或影像集(第二種變體)中檢測到的一組關鍵點的描述符。
|
| |
| virtual void | compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors) |
| |
| virtual int | defaultNorm () const |
| |
| virtual int | descriptorSize () const |
| |
| virtual int | descriptorType () const |
| |
| virtual void | detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray()) |
| | 在影像(第一種變體)或影像集(第二種變體)中檢測關鍵點。
|
| |
| virtual void | detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray()) |
| |
| virtual void | detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false) |
| |
| virtual bool | empty () const CV_OVERRIDE |
| | 如果檢測器物件為空,則返回 true。
|
| |
| virtual void | read (const FileNode &) CV_OVERRIDE |
| | 從檔案儲存中讀取演算法引數。
|
| |
| void | read (const String &fileName) |
| |
| void | write (const Ptr< FileStorage > &fs, const String &name) const |
| |
| void | write (const String &fileName) const |
| |
| virtual void | write (FileStorage &) const CV_OVERRIDE |
| | 將演算法引數儲存到檔案儲存中。
|
| |
| void | write (FileStorage &fs, const String &name) const |
| |
| | Algorithm () |
| |
| virtual | ~Algorithm () |
| |
| virtual void | clear () |
| | 清除演算法狀態。
|
| |
| virtual void | save (const String &filename) const |
| |
| void | write (const Ptr< FileStorage > &fs, const String &name=String()) const |
| |
| void | write (FileStorage &fs, const String &name) const |
| |
實現 Harris-Laplace 特徵檢測器,如 [195] 中所述。
◆ create()
| static Ptr< HarrisLaplaceFeatureDetector > cv::xfeatures2d::HarrisLaplaceFeatureDetector::create |
( |
int | numOctaves = 6, |
|
|
float | corn_thresh = 0.01f, |
|
|
float | DOG_thresh = 0.01f, |
|
|
int | maxCorners = 5000, |
|
|
int | num_layers = 4 ) |
|
static |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.create( | [, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]] | ) -> | retval |
| cv.xfeatures2d.HarrisLaplaceFeatureDetector_create( | [, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]] | ) -> | retval |
建立新的實現例項。
- 引數
-
| numOctaves | 尺度空間金字塔中的八度音階數 |
| corn_thresh | Harris 角點響應的閾值 |
| DOG_thresh | 高斯差分尺度選擇的閾值 |
| maxCorners | 要考慮的最大角點數 |
| num_layers | 每個八度音階的中間尺度數 |
◆ getCornThresh()
| virtual float cv::xfeatures2d::HarrisLaplaceFeatureDetector::getCornThresh |
( |
| ) |
const |
|
純虛擬函式 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getCornThresh( | | ) -> | retval |
◆ getDefaultName()
| String cv::xfeatures2d::HarrisLaplaceFeatureDetector::getDefaultName |
( |
| ) |
const |
|
virtual |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getDefaultName( | | ) -> | retval |
返回演算法字串識別符號。當物件儲存到檔案或字串時,此字串用作頂級 xml/yml 節點標籤。
從 cv::Feature2D 重新實現。
◆ getDOGThresh()
| virtual float cv::xfeatures2d::HarrisLaplaceFeatureDetector::getDOGThresh |
( |
| ) |
const |
|
純虛擬函式 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getDOGThresh( | | ) -> | retval |
◆ getMaxCorners()
| virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getMaxCorners |
( |
| ) |
const |
|
純虛擬函式 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getMaxCorners( | | ) -> | retval |
◆ getNumLayers()
| virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getNumLayers |
( |
| ) |
const |
|
純虛擬函式 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getNumLayers( | | ) -> | retval |
◆ getNumOctaves()
| virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getNumOctaves |
( |
| ) |
const |
|
純虛擬函式 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.getNumOctaves( | | ) -> | retval |
◆ setCornThresh()
| virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setCornThresh |
( |
float | corn_thresh_ | ) |
|
|
純虛擬函式 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setCornThresh( | corn_thresh_ | ) -> | 無 |
◆ setDOGThresh()
| virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setDOGThresh |
( |
float | DOG_thresh_ | ) |
|
|
純虛擬函式 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setDOGThresh( | DOG_thresh_ | ) -> | 無 |
◆ setMaxCorners()
| virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setMaxCorners |
( |
int | maxCorners_ | ) |
|
|
純虛擬函式 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setMaxCorners( | maxCorners_ | ) -> | 無 |
◆ setNumLayers()
| virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setNumLayers |
( |
int | num_layers_ | ) |
|
|
純虛擬函式 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setNumLayers( | num_layers_ | ) -> | 無 |
◆ setNumOctaves()
| virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setNumOctaves |
( |
int | numOctaves_ | ) |
|
|
純虛擬函式 |
| Python |
|---|
| cv.xfeatures2d.HarrisLaplaceFeatureDetector.setNumOctaves( | numOctaves_ | ) -> | 無 |
此類文件由以下檔案生成