OpenCV 4.12.0
開源計算機視覺
載入中...
搜尋中...
無匹配項
cv::xfeatures2d::HarrisLaplaceFeatureDetector 類參考抽象類

實現 Harris-Laplace 特徵檢測器,如 [195] 中所述。 更多...

#include <opencv2/xfeatures2d.hpp>

cv::xfeatures2d::HarrisLaplaceFeatureDetector 的協作圖

公共成員函式

virtual float getCornThresh () const =0
 
String getDefaultName () const CV_OVERRIDE
 
virtual float getDOGThresh () const =0
 
virtual int getMaxCorners () const =0
 
virtual int getNumLayers () const =0
 
virtual int getNumOctaves () const =0
 
virtual void setCornThresh (float corn_thresh_)=0
 
virtual void setDOGThresh (float DOG_thresh_)=0
 
virtual void setMaxCorners (int maxCorners_)=0
 
virtual void setNumLayers (int num_layers_)=0
 
virtual void setNumOctaves (int numOctaves_)=0
 
- 從 cv::Feature2D 繼承的公共成員函式
virtual ~Feature2D ()
 
virtual void compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors)
 計算影像(第一種變體)或影像集(第二種變體)中檢測到的一組關鍵點的描述符。
 
virtual void compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors)
 
virtual int defaultNorm () const
 
virtual int descriptorSize () const
 
virtual int descriptorType () const
 
virtual void detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray())
 在影像(第一種變體)或影像集(第二種變體)中檢測關鍵點。
 
virtual void detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray())
 
virtual void detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false)
 
virtual bool empty () const CV_OVERRIDE
 如果檢測器物件為空,則返回 true。
 
virtual void read (const FileNode &) CV_OVERRIDE
 從檔案儲存中讀取演算法引數。
 
void read (const String &fileName)
 
void write (const Ptr< FileStorage > &fs, const String &name) const
 
void write (const String &fileName) const
 
virtual void write (FileStorage &) const CV_OVERRIDE
 將演算法引數儲存到檔案儲存中。
 
void write (FileStorage &fs, const String &name) const
 
- 從 cv::Algorithm 繼承的公共成員函式
 Algorithm ()
 
virtual ~Algorithm ()
 
virtual void clear ()
 清除演算法狀態。
 
virtual void save (const String &filename) const
 
void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 
void write (FileStorage &fs, const String &name) const
 

靜態公共成員函式

static Ptr< HarrisLaplaceFeatureDetectorcreate (int numOctaves=6, float corn_thresh=0.01f, float DOG_thresh=0.01f, int maxCorners=5000, int num_layers=4)
 建立新的實現例項。
 
- 從 cv::Algorithm 繼承的靜態公共成員函式
template<typename _Tp >
static Ptr< _Tpload (const String &filename, const String &objname=String())
 從檔案中載入演算法。
 
template<typename _Tp >
static Ptr< _TploadFromString (const String &strModel, const String &objname=String())
 從字串載入演算法。
 
template<typename _Tp >
static Ptr< _Tpread (const FileNode &fn)
 從檔案節點讀取演算法。
 

附加的繼承成員

- 從 cv::Algorithm 繼承的保護成員函式
void writeFormat (FileStorage &fs) const
 

詳細描述

實現 Harris-Laplace 特徵檢測器,如 [195] 中所述。

成員函式文件

◆ create()

static Ptr< HarrisLaplaceFeatureDetector > cv::xfeatures2d::HarrisLaplaceFeatureDetector::create ( int numOctaves = 6,
float corn_thresh = 0.01f,
float DOG_thresh = 0.01f,
int maxCorners = 5000,
int num_layers = 4 )
static
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.create([, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]]) -> retval
cv.xfeatures2d.HarrisLaplaceFeatureDetector_create([, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]]) -> retval

建立新的實現例項。

引數
numOctaves尺度空間金字塔中的八度音階數
corn_threshHarris 角點響應的閾值
DOG_thresh高斯差分尺度選擇的閾值
maxCorners要考慮的最大角點數
num_layers每個八度音階的中間尺度數

◆ getCornThresh()

virtual float cv::xfeatures2d::HarrisLaplaceFeatureDetector::getCornThresh ( ) const
純虛擬函式
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getCornThresh() -> retval

◆ getDefaultName()

String cv::xfeatures2d::HarrisLaplaceFeatureDetector::getDefaultName ( ) const
virtual
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getDefaultName() -> retval

返回演算法字串識別符號。當物件儲存到檔案或字串時,此字串用作頂級 xml/yml 節點標籤。

cv::Feature2D 重新實現。

◆ getDOGThresh()

virtual float cv::xfeatures2d::HarrisLaplaceFeatureDetector::getDOGThresh ( ) const
純虛擬函式
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getDOGThresh() -> retval

◆ getMaxCorners()

virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getMaxCorners ( ) const
純虛擬函式
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getMaxCorners() -> retval

◆ getNumLayers()

virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getNumLayers ( ) const
純虛擬函式
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getNumLayers() -> retval

◆ getNumOctaves()

virtual int cv::xfeatures2d::HarrisLaplaceFeatureDetector::getNumOctaves ( ) const
純虛擬函式
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.getNumOctaves() -> retval

◆ setCornThresh()

virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setCornThresh ( float corn_thresh_)
純虛擬函式
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.setCornThresh(corn_thresh_) ->

◆ setDOGThresh()

virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setDOGThresh ( float DOG_thresh_)
純虛擬函式
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.setDOGThresh(DOG_thresh_) ->

◆ setMaxCorners()

virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setMaxCorners ( int maxCorners_)
純虛擬函式
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.setMaxCorners(maxCorners_) ->

◆ setNumLayers()

virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setNumLayers ( int num_layers_)
純虛擬函式
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.setNumLayers(num_layers_) ->

◆ setNumOctaves()

virtual void cv::xfeatures2d::HarrisLaplaceFeatureDetector::setNumOctaves ( int numOctaves_)
純虛擬函式
Python
cv.xfeatures2d.HarrisLaplaceFeatureDetector.setNumOctaves(numOctaves_) ->

此類文件由以下檔案生成