OpenCV 4.12.0
開源計算機視覺
載入中...
搜尋中...
無匹配項
cv::GFTTDetector 類參考abstract

用於使用 goodFeaturesToTrack 函式進行特徵檢測的包裝類。: 更多...

#include <opencv2/features2d.hpp>

cv::GFTTDetector 的協作圖

公共成員函式

virtual int getBlockSize () const =0
 
virtual String getDefaultName () const CV_OVERRIDE
 
virtual int getGradientSize ()=0
 
virtual bool getHarrisDetector () const =0
 
virtual double getK () const =0
 
virtual int getMaxFeatures () const =0
 
virtual double getMinDistance () const =0
 
virtual double getQualityLevel () const =0
 
virtual void setBlockSize (int blockSize)=0
 
virtual void setGradientSize (int gradientSize_)=0
 
virtual void setHarrisDetector (bool val)=0
 
virtual void setK (double k)=0
 
virtual void setMaxFeatures (int maxFeatures)=0
 
virtual void setMinDistance (double minDistance)=0
 
virtual void setQualityLevel (double qlevel)=0
 
- 從 cv::Feature2D 繼承的公共成員函式
virtual ~Feature2D ()
 
virtual void compute (InputArray image, std::vector< KeyPoint > &keypoints, OutputArray descriptors)
 計算影像(第一個變體)或影像集(第二個變體)中檢測到的一組關鍵點的描述符。
 
virtual void compute (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors)
 
virtual int defaultNorm () const
 
virtual int descriptorSize () const
 
virtual int descriptorType () const
 
virtual void detect (InputArray image, std::vector< KeyPoint > &keypoints, InputArray mask=noArray())
 在影像(第一個變體)或影像集(第二個變體)中檢測關鍵點。
 
virtual void detect (InputArrayOfArrays images, std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray())
 
virtual void detectAndCompute (InputArray image, InputArray mask, std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false)
 
virtual bool empty () const CV_OVERRIDE
 如果檢測器物件為空,則返回 true。
 
virtual void read (const FileNode &) CV_OVERRIDE
 從檔案儲存中讀取演算法引數。
 
void read (const String &fileName)
 
void write (const Ptr< FileStorage > &fs, const String &name) const
 
void write (const String &fileName) const
 
virtual void write (FileStorage &) const CV_OVERRIDE
 將演算法引數儲存到檔案儲存中。
 
void write (FileStorage &fs, const String &name) const
 
- 從 cv::Algorithm 繼承的公共成員函式
 Algorithm ()
 
virtual ~Algorithm ()
 
virtual void clear ()
 清除演算法狀態。
 
virtual void save (const String &filename) const
 
void write (const Ptr< FileStorage > &fs, const String &name=String()) const
 
void write (FileStorage &fs, const String &name) const
 

靜態公共成員函式

static Ptr< GFTTDetectorcreate (int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04)
 
static Ptr< GFTTDetectorcreate (int maxCorners=1000, double qualityLevel=0.01, double minDistance=1, int blockSize=3, bool useHarrisDetector=false, double k=0.04)
 
- 從 cv::Algorithm 繼承的靜態公共成員函式
template<typename _Tp >
static Ptr< _Tpload (const String &filename, const String &objname=String())
 從檔案中載入演算法。
 
template<typename _Tp >
static Ptr< _TploadFromString (const String &strModel, const String &objname=String())
 從字串載入演算法。
 
template<typename _Tp >
static Ptr< _Tpread (const FileNode &fn)
 從檔案節點讀取演算法。
 

附加繼承成員

- 從 cv::Algorithm 繼承的保護成員函式
void writeFormat (FileStorage &fs) const
 

詳細描述

用於使用 goodFeaturesToTrack 函式進行特徵檢測的包裝類。

成員函式文件

◆ create() [1/2]

static Ptr< GFTTDetector > cv::GFTTDetector::create ( int maxCorners,
double qualityLevel,
double minDistance,
int blockSize,
int gradiantSize,
bool useHarrisDetector = false,
double k = 0.04 )
static
Python
cv.GFTTDetector.create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> retval
cv.GFTTDetector.create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> retval
cv.GFTTDetector_create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> retval
cv.GFTTDetector_create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> retval

◆ create() [2/2]

static Ptr< GFTTDetector > cv::GFTTDetector::create ( int maxCorners = 1000,
double qualityLevel = 0.01,
double minDistance = 1,
int blockSize = 3,
bool useHarrisDetector = false,
double k = 0.04 )
static
Python
cv.GFTTDetector.create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> retval
cv.GFTTDetector.create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> retval
cv.GFTTDetector_create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> retval
cv.GFTTDetector_create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> retval

◆ getBlockSize()

virtual int cv::GFTTDetector::getBlockSize ( ) const
純虛擬函式
Python
cv.GFTTDetector.getBlockSize() -> retval

◆ getDefaultName()

virtual String cv::GFTTDetector::getDefaultName ( ) const
virtual
Python
cv.GFTTDetector.getDefaultName() -> retval

返回演算法字串識別符號。當物件儲存到檔案或字串時,此字串用作頂級 xml/yml 節點標記。

cv::Feature2D 重新實現。

◆ getGradientSize()

virtual int cv::GFTTDetector::getGradientSize ( )
純虛擬函式
Python
cv.GFTTDetector.getGradientSize() -> retval

◆ getHarrisDetector()

virtual bool cv::GFTTDetector::getHarrisDetector ( ) const
純虛擬函式
Python
cv.GFTTDetector.getHarrisDetector() -> retval

◆ getK()

virtual double cv::GFTTDetector::getK ( ) const
純虛擬函式
Python
cv.GFTTDetector.getK() -> retval

◆ getMaxFeatures()

virtual int cv::GFTTDetector::getMaxFeatures ( ) const
純虛擬函式
Python
cv.GFTTDetector.getMaxFeatures() -> retval

◆ getMinDistance()

virtual double cv::GFTTDetector::getMinDistance ( ) const
純虛擬函式
Python
cv.GFTTDetector.getMinDistance() -> retval

◆ getQualityLevel()

virtual double cv::GFTTDetector::getQualityLevel ( ) const
純虛擬函式
Python
cv.GFTTDetector.getQualityLevel() -> retval

◆ setBlockSize()

virtual void cv::GFTTDetector::setBlockSize ( int blockSize)
純虛擬函式
Python
cv.GFTTDetector.setBlockSize(blockSize) ->

◆ setGradientSize()

virtual void cv::GFTTDetector::setGradientSize ( int gradientSize_)
純虛擬函式
Python
cv.GFTTDetector.setGradientSize(gradientSize_) ->

◆ setHarrisDetector()

virtual void cv::GFTTDetector::setHarrisDetector ( bool val)
純虛擬函式
Python
cv.GFTTDetector.setHarrisDetector(val) ->

◆ setK()

virtual void cv::GFTTDetector::setK ( double k)
純虛擬函式
Python
cv.GFTTDetector.setK(k) ->

◆ setMaxFeatures()

virtual void cv::GFTTDetector::setMaxFeatures ( int maxFeatures)
純虛擬函式
Python
cv.GFTTDetector.setMaxFeatures(maxFeatures) ->

◆ setMinDistance()

virtual void cv::GFTTDetector::setMinDistance ( double minDistance)
純虛擬函式
Python
cv.GFTTDetector.setMinDistance(minDistance) ->

◆ setQualityLevel()

virtual void cv::GFTTDetector::setQualityLevel ( double qlevel)
純虛擬函式
Python
cv.GFTTDetector.setQualityLevel(qlevel) ->

此類的文件是從以下檔案生成的