OpenCV 4.12.0
開源計算機視覺
載入中...
搜尋中...
無匹配項
samples/cpp/kalman.cpp

使用標準卡爾曼濾波器的示例

#include <stdio.h>
using namespace cv;
static inline Point calcPoint(Point2f center, double R, double angle)
{
return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
}
static void help()
{
printf( "\nOpenCV卡爾曼濾波器C語言呼叫的示例。\n"
" 跟蹤旋轉點。\n"
" 點在一個圓中移動,並由一個 1D 狀態描述。\n"
" state_k+1 = state_k + speed + 過程噪聲 N(0, 1e-5)\n"
" 速度是恆定的。\n"
" 狀態和測量向量都是 1D 的(一個點角度),\n"
" 測量是真實狀態 + 高斯噪聲 N(0, 1e-1)。\n"
" 真實點和測量點用紅色線段連線,\n"
" 真實點和估計點用黃色線段連線,\n"
" 真實點和校正後的估計點用綠色線段連線。\n"
"(如果卡爾曼濾波器工作正常,\n"
" 黃色線段應該比紅色線段短,\n"
" 綠色線段應該比黃色線段短。)"
"\n"
" 按下任意鍵(除了 ESC)將重置跟蹤。\n"
" 按下 ESC 將停止程式。\n"
);
}
int main(int, char**)
{
help();
Mat img(500, 500, CV_8UC3);
KalmanFilter KF(2, 1, 0);
Mat state(2, 1, CV_32F); /* (phi, delta_phi) */
Mat processNoise(2, 1, CV_32F);
Mat measurement = Mat::zeros(1, 1, CV_32F);
char code = (char)-1;
for(;;)
{
img = Scalar::all(0);
state.at<float>(0) = 0.0f;
state.at<float>(1) = 2.f * (float)CV_PI / 6;
KF.transitionMatrix = (Mat_<float>(2, 2) << 1, 1, 0, 1);
setIdentity(KF.measurementMatrix);
setIdentity(KF.processNoiseCov, Scalar::all(1e-5));
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
setIdentity(KF.errorCovPost, Scalar::all(1));
randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));
for(;;)
{
Point2f center(img.cols*0.5f, img.rows*0.5f);
float R = img.cols/3.f;
double stateAngle = state.at<float>(0);
Point statePt = calcPoint(center, R, stateAngle);
Mat prediction = KF.predict();
double predictAngle = prediction.at<float>(0);
Point predictPt = calcPoint(center, R, predictAngle);
// 生成測量
randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));
measurement += KF.measurementMatrix*state;
double measAngle = measurement.at<float>(0);
Point measPt = calcPoint(center, R, measAngle);
// 基於測量校正狀態估計
// 更新 statePost & errorCovPost
KF.correct(measurement);
double improvedAngle = KF.statePost.at<float>(0);
Point improvedPt = calcPoint(center, R, improvedAngle);
// 繪製點
img = img * 0.2;
drawMarker(img, measPt, Scalar(0, 0, 255), cv::MARKER_SQUARE, 5, 2);
drawMarker(img, predictPt, Scalar(0, 255, 255), cv::MARKER_SQUARE, 5, 2);
drawMarker(img, improvedPt, Scalar(0, 255, 0), cv::MARKER_SQUARE, 5, 2);
drawMarker(img, statePt, Scalar(255, 255, 255), cv::MARKER_STAR, 10, 1);
// 預測一步
Mat test = Mat(KF.transitionMatrix*KF.statePost);
drawMarker(img, calcPoint(center, R, Mat(KF.transitionMatrix*KF.statePost).at<float>(0)),
Scalar(255, 255, 0), cv::MARKER_SQUARE, 12, 1);
line( img, statePt, measPt, Scalar(0,0,255), 1, LINE_AA, 0 );
line( img, statePt, predictPt, Scalar(0,255,255), 1, LINE_AA, 0 );
line( img, statePt, improvedPt, Scalar(0,255,0), 1, LINE_AA, 0 );
randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
state = KF.transitionMatrix*state + processNoise;
imshow( "Kalman", img );
code = (char)waitKey(1000);
if( code > 0 )
break;
}
if( code == 27 || code == 'q' || code == 'Q' )
break;
}
return 0;
}
卡爾曼濾波器類。
Definition tracking.hpp:364
從 Mat 派生的模板矩陣類。
定義 mat.hpp:2257
n 維密集陣列類
定義 mat.hpp:830
_Tp & at(int i0=0)
返回指定陣列元素的引用。
void setIdentity(InputOutputArray mtx, const Scalar &s=Scalar(1))
初始化一個縮放的單位矩陣。
void randn(InputOutputArray dst, InputArray mean, InputArray stddev)
用正態分佈的隨機數填充陣列。
#define CV_32F
Definition interface.h:78
CV_8UC3
#define CV_8UC3
#define CV_PI
定義 cvdef.h:380
void imshow(const String &winname, InputArray mat)
在指定視窗中顯示影像。
int waitKey(int delay=0)
等待按鍵按下。
void drawMarker(InputOutputArray img, Point position, const Scalar &color, int markerType=MARKER_CROSS, int markerSize=20, int thickness=1, int line_type=8)
在影像中的預定義位置繪製標記。
void line(InputOutputArray img, Point pt1, Point pt2, const Scalar &color, int thickness=1, int lineType=LINE_8, int shift=0)
繪製連線兩點的線段。
@ MARKER_SQUARE
一個正方形標記形狀。
Definition imgproc.hpp:923
@ MARKER_STAR
星形標記形狀,十字形和傾斜十字形的組合。
Definition imgproc.hpp:921
int main(int argc, char *argv[])
定義 highgui_qt.cpp:3
定義 core.hpp:107